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IM30, the inner membrane-associated protein of 30 kDa, is conserved in

cyanobacteria and chloroplasts. Although its exact physiological function is

still mysterious, IM30 is clearly essential for thylakoid membrane biogenesis

and/or dynamics. Recently, a cryptic IM30 GTPase activity has been

reported, albeit thus far no physiological function has been attributed to this.

Yet, it is still possible that GTP binding/hydrolysis affects formation of the

prototypical large homo-oligomeric IM30 ring and rod structures. Here, we

show that the Synechocystis sp. PCC 6803 IM30 protein in fact is an

NTPase that hydrolyzes GTP and ATP, but not CTP or UTP, with about

identical rates. While IM30 forms large oligomeric ring complexes, nucleo-

tide binding and/or hydrolysis are clearly not required for ring formation.

Keywords: cyanobacteria; IM30; PspA; Synechocystis; thylakoid membrane;

Vipp1

Introduction

The inner membrane-associated protein of 30 kDa

(IM30), also known as the vesicle-inducing protein in

plastids 1 (Vipp1), is a member of the PspA/IM30 pro-

tein family. The protein is conserved and essential in

cyanobacteria and chloroplasts [1–3]. Depletion of

IM30 in cyanobacteria leads to drastically impaired

formation of thylakoid membranes (TMs), accompa-

nied by a reduced photosynthetic activity [1,4–6]. Simi-

lar, but not entirely conclusive results have been

reported for chloroplasts of Arabidopsis thaliana and

Chlamydomonas rheinhardtii [3,7]. All results indicate a

role of IM30 in TM dynamics, and IM30 appears to

be crucially involved in two physiological processes:

(a) membrane protection/repair and (b) membrane

remodeling [8]. The membrane-protective activity of

IM30 does not appear to be limited to TM-containing

photosynthetic organisms, but is rather conserved in

the entire PspA/IM30 family, as, for example, expres-

sion of IM30 complements the deficiencies of an

E. coli pspA deletion strain [9,10]. In contrast, TM-

specific functions of IM30 can likely not be accom-

plished by PspA [1,2,11,12].

A distinct structural feature of all PspA/IM30 family

members is their intrinsic propensity to form large,

homo-oligomeric ring/rod structures with masses > 1 MDa

[8]. In vitro formation of rings and rods has been

observed multiple times via electron microscopy

[11,13–19] and atomic force microscopy (AFM) [20].

While E. coli PspA appears to form rings with a

mainly constant diameter of ~ 20 nm [13], Synechocys-

tis PspA and IM30 rings/rods were found to have

varying diameters and symmetries [19,21]. Recently,

the preliminary structures of homo-oligomeric

cyanobacterial IM30 (Synechocystis sp., Nostoc puncti-

forme sp. PCC 73102) and PspA (Synechocystis sp.

PCC 6803) have been made available [21–23]. PspA/

IM30 monomers are mainly a-helical when organized

into high molecular mass oligomers, with flexible
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linkers connecting individual a-helical regions [21–24].
IM30 monomers are arranged horizontally to the ring

axis, forming an interwoven, layer-like structure with

11–18 monomers per layer and 5–7 layers per ring [22–
24]. In contrast to the homo-oligomer, the structure of

membrane-bound IM30 is currently enigmatic. IM30

binds to thylakoid membranes in vivo [25,26] as well as

to negatively charged model membranes in vitro [27–
30]. Recently, upon membrane binding, dissociation of

IM30 rings into partly unfolded monomers and subse-

quent formation of a membrane surface-covering carpet

structure has been observed [20]. Thus, monomer adhe-

sion to the membrane surface appears to be thermody-

namically favored over ring formation. As the IM30

membrane-binding propensity is enhanced at acidic con-

ditions, IM30 potentially binds specifically to stressed

TM regions via sensing proton leakage followed by ring

dissociation and formation of the membrane-protecting

carpet [31]. Yet, IM30 is also able to trigger fusion of

TM-mimicking liposomes in vitro when Mg2+ is present

[27]. In fact, Mg2+ binding leads to a rearrangement of

the oligomeric IM30 structure [29], which potentially

switches the IM30 function from membrane protection

to membrane remodeling.

wRecently, GTP binding and hydrolysis were observed

for the IM30 proteins of Arabidopsis thaliana and Syne-

chocystis sp. PCC 6803, although IM30 does not contain

any canonical domains or motifs involved in GTP bind-

ing [32,33]. While GTP binding and/or hydrolysis do not

seem to decisively regulate membrane interactions or the

membrane remodeling activity of IM30 [32], it is still pos-

sible that GTP binding and/or hydrolysis might affect

formation of IM30 rings. Actually, based on the identifi-

cation of a stably bound nucleotide in oligomeric IM30,

it has been suggested that ATP binding and/or hydrolysis

are crucial for the formation of IM30 rings budding off

from membrane surfaces [22].

In the present study, we show that SynIM30 rings

self-assemble in complete absence of nucleotides, and

thus, nucleotide binding or hydrolysis do not trigger

ring formation. Yet, SynIM30 rings are able to hydro-

lyze ATP and GTP at about similar rates, but not

CTP or UTP, and thus, IM30 in fact specifically binds

and hydrolyzes purine-based nucleotides.

Experimental procedures

Cloning, expression, and purification of IM30

Construction of the plasmid used for expression of

His-tagged wt SynIM30 (pRSET IM30 wt) was

described in detail previously [4], and construction of

the plasmid used for expression of the IM30

FERM_EE mutant (E83A, E84A, F168A, E169A,

R170A, M171A) is described in ref. [32].

IM30 of Synechocystis sp. PCC 6803 (SynIM30 wt

and FERM_EE) was heterologously expressed in

E. coli BL21 DE3 and purified as described in detail

earlier [16]. In short, after expression, cells were lysed

via sonification in 50 mM Na-phosphate buffer

(300 mM NaCl, 20 mM imidazole, pH 7.6). Cell debris

was removed by centrifugation, and the supernatant

was applied to a Ni2+-NTA affinity column. The col-

umn was washed with increasing concentrations of

imidazole (20/50/100 mM; 50 mM Na-phosphate,

300 mM NaCl, pH 7.6) and finally eluted with 500 mM

imidazole (Na-phosphate, 300 mM NaCl, pH 7.6). The

buffer was exchanged for 20 mM HEPES (pH 7.6) by

gel filtration (Sephadex G25 or Superose 12). Where

necessary, the protein solution was concentrated using

an Amicon Ultra Centrifugal filter unit (MWCO

30 kDa, regenerated cellulose membrane). The protein

concentration was determined via a Bradford assay

using BSA as a standard. For denaturation, 6 M urea

was added to the lysis buffer and the cell extract was

incubated in 6 M urea for 4 h at 4 °C. Subsequently,
upon loading the sample onto the affinity column, the

sample was washed multiple times with buffer contain-

ing 20 mM imidazole plus 6 M urea. For refolding on

the column, the subsequent washing steps (compare

above) and the elution were performed using urea-free

buffer, as used in case of purification under native

conditions. For analysis of the NTPase activity, the

purification was performed in HEPES buffer instead

of phosphate buffer as described before [32]. In this

case, the protein solutions were stored in 1 : 1 (v/v)

glycerol at �20 °C.

Size exclusion chromatography

The size of SynIM30 oligomers was analyzed using an
€AKTA basic system (GE Healthcare, Freiburg, Ger-

many) with a Superose12 10/300 GL column (GE

Healthcare) equilibrated with 20 mM HEPES (pH 7.6)

at 8 °C. Protein elution was followed via monitoring

the absorbance at 280 nm. The column was calibrated

using standards of known size (blue dextran

> 2000 kDa, ferritin (440 kDa), b-amylase (200 kDa),

aldolase (158 kDa), conalbumin (75 kDa), ovalbumin

(44 kDa), carbonic anhydrase (29 kDa), and cyto-

chrome c oxidase (16.4 kDa)).

Circular dichroism spectroscopy

Circular dichroism (CD) spectra were measured using

a JASCO J815 CD spectrometer (JASCO Corporation,
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Tokyo, Japan). With purified native and the refolded

protein, spectra ranging from 200 to 260 nm were

recorded at 20 °C with a scan rate of 100 nm�min�1,

1 nm steps, and 1 s data integration time. When urea-

denatured protein was analyzed, spectra were mea-

sured from 210 to 260 nm. Each sample contained

0.1 mg�mL�1 SynIM30 in 10 mM HEPES buffer (pH

7.6) or 10 mM HEPES buffer and 6 M urea (pH 7.6).

For each sample, three spectra were averaged and

smoothened by the JASCO software package (Sav-

itzky–Golay filter), if necessary.

Electron microscopy

For negative-staining electron microscopy, 3 µL sam-

ple was applied to glow-discharged (PELCO easiGlow

Glow Discharger, Ted Pella Inc., Redding, CA, USA)

continuous carbon grids (CF-300 Cu, Electron Micro-

scopy Sciences, Hatfield, PA, USA). The sample was

incubated on the grid for 1 min. Then, the grid was

side-blotted on filter paper, washed with 3 µL water,

and stained with 3 µL 2% uranyl acetate for 30 s and

air-dried. The grids were imaged with a 120 kV Talos

L120C electron microscope (Thermo Fisher Scientific/

FEI, Hillsboro, OR, USA) equipped with a CETA

camera at a pixel size of 4.06 �A/pix at an underfocus

of 1.0–2.5 µm.

Malachite Green assay

0.1 µM SynIM30 was mixed with 0.5 mM of GTP,

ATP, CTP, or UTP and Mg2+ (2.5 mM) in 20 mM

Hepes (pH 7.6) and incubated for 30 min at 37 °C.
200 µL of this sample was transferred to a 96-well

plate, mixed with 50 µL of the malachite green reac-

tion mixture (‘Gold mix’, PiColorLock Gold Phos-

phate Detection Kit, Innova Biosciences, Cambridge,

UK) and incubated for 5 min at RT. Finally, 20 µL of

‘stabilizer’ was added. Absorbance at 635 nm was

measured using an OMEGA FLUOstar Platereader

(BMG Labtech, Ortenberg, Germany). Buffer blank

(including the respective NTP concentration) absor-

bance was subtracted, and the concentration of

released phosphate was determined by linear regression

from a phosphate standard curve.

LC-MS analysis of extracted nucleoside

phosphates in negative ion mode

25 µM SynIM30 was incubated for 30 min in methanol

(final concentration 80%) to denature the protein. Pro-

tein denaturation was verified via CD spectroscopy.

Denaturation dismantles the potential nucleotide-bind-

ing site and releases any bound nucleotide. The precip-

itated protein was removed by centrifugation at

16 000 g and 4 °C for 15 min. The supernatant con-

taining any beforehand protein-bound substances was

collected, dried in a SpeedVac (vacuum centrifuge,

Eppendorf, Hamburg, Germany), and finally resus-

pended in water.

For separation and subsequent mass-spectrometric

analysis of the nucleotide solutions, a chromatographic

approach from Xing et al. was adapted [34]. Sample

amounts corresponding to 500 pmol initial protein

were injected onto a Hypercarb column (5 µm,

100 9 2.1 mm) (Thermo Scientific, Waltham, MA,

USA), and the column oven was set to 35 °C. Mobile

phase A (MPA) consisted of 50 mM ammonium acet-

ate and 0.1% diethylamine in water (pH = 9) and

mobile phase B (MPB) of pure, LC-MS grade ACN.

At a flow rate of 0.5 mL�min�1, the following gradient

was run: 5% MPB from 0 to 2 min, 5–20% MPB

from 2 to 8 min, 20–90% MPB from 8 to 14 min,

90% MPB from 14 to 15 min, 90–5% MPB from 15

to 17 min, and 5% MPB from 17 to 22 min. Mass

spectrometric analyses of the negatively charged ions

were conducted using an Agilent 6460 QQQ mass

spectrometer in the dynamic multiple reaction moni-

toring mode (dMRM). This allows monitoring a speci-

fic fragmentation reaction at a given retention time.

The selected mass transitions and retention time win-

dows are displayed in Table 1. Ion source parameters

were set as followed: gas temperature 350 °C, gas flow

8 L�min�1, nebulizer pressure 50 psi, sheath gas tem-

perature 350 °C, sheath gas flow 2 L�min�1, capillary

voltage �3500 V.

Table 1. QQQ parameters for the detection of NTPs.

Compound name Precursor ion Product ion Fragmentor Collision energy

Cell accelerator

voltage

Ret.

time (min)

Delta

ret. time

ATP 506 159 95 29 5 9.3 4

ADP 426 79 100 40 5 9.1 4

GTP 522.3 424 105 17 5 9 4

GDP 442 79 105 40 5 9 4
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Results and Discussion

IM30 hydrolyzes purine-based, but not

pyrimidine-based nucleotides

As shown before, IM30 oligomers of Synechocystis

and Arabidopsis hydrolyze GTP reaching a Pi release

rate of about 20 µM at 2 µg/100 µL protein concentra-

tion [32,33]. To gain further insights into the specificity

and (potential) function of GTP binding, we at first

analyzed the nucleotide binding/hydrolysis specificity

and tested whether IM30 of the cyanobacterium Syne-

chocystis sp. PCC 6803 (SynIM30) is also able to

hydrolyze other nucleoside triphosphates (NTPs).

Therefore, we used a well-established malachite green-

based assay to analyze the apparent NTPase activity

of SynIM30. As a negative control, we used the IM30

mutant SynIM30 FERM_EE, which does not hydro-

lyze GTP, as shown recently [32]. Based on the now

available IM30 structure, this is obvious, as this

mutant does not form higher-ordered oligomers any-

more, and oligomerization is required for nucleotide

binding as further discussed below [22].

When the purity of IM30 wt was analyzed via SDS-

PAGE (Fig. 1A), no other proteins were detected

(Fig. 1A). While the purified SynIM30 wt protein, but

not the mutant, clearly hydrolyzes the purine-based

nucleotides GTP and ATP to a similar extent, very lit-

tle activity was observed when the pyrimidine-based

CTP or UTP were added instead (Fig. 1B). This

implies that IM30 specifically hydrolyzes purine-based,

but not pyrimidine-based nucleotides, and IM30 is in

fact not a GTPase but an NTPase, hydrolyzing GTP

and ATP with about identical rates (Fig. 1B). This

observation is in excellent agreement with the initially

observed GTP-hydrolyzing activity of SynIM30 [32]

and the now observed binding of ADP to IM30 rings

[22,24].

Thus far, solely interaction between defined IM30

side chains with the phosphate groups of the NTP has

been suggested to be involved in nucleotide binding

[22]. Our results now clearly indicate that also the

bases are decisive for the interaction with IM30, and

the putative nucleotide-binding pocket appears to

specifically bind the larger purine-heterocycle of NTPs.

Substrate promiscuity is not common but reported

for several ATP/GTPases, and, for example the pre-

dicted GTP-binding protein HflX exhibits a GTPase as

well as an ATPase activity, albeit the activities were

not identical [35]. Similarly, the YchF subfamily, a

unique subgroup of the Obg family of P-loop

GTPases, binds both, GTP and ATP [36]. It has been

hypothesized that during the evolution of the GTPase

superclass from a primordial GTPase, the activity of

some proteins has switched to an ATPase activity on

several independent occasions [37,38]. Nevertheless, all

these proteins do contain canonical nucleotide-binding

motifs in their sequence, in contrast to IM30.

Fig. 1. IM30 specifically hydrolyzes purine-based nucleotides. (A) SDS/PAGE analysis of heterologously expressed and purified IM30 wt

(lane 1), of in vitro refolded IM30 wt (lane 2), as well as of purified IM30 FERM_EE (lane 3). The wt protein was electrophoretically pure,

whereas we observed some small degradation products in case of IM30 FERM_EE. The molecular masses of the protein standard are

given on the left. (B) The Pi release caused by increasing amounts of IM30 in presence of 0.5 mM GTP (black), ATP (red), CTP (blue), or

UTP (green) and 2.5 mM Mg2+ after incubation for 30 min at 37 °C was measured using a malachite green-based assay. Only minor release

of Pi was detected in the negative control (IM30 FERM_EE) (black squares with holes: GTP, red squares with holes: ATP). When the wt

protein was analyzed, exclusively in presence of the purine-based nucleotides GTP or ATP, a significant amount of Pi was released (error

bars represent SD, n = 3).
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Compared to most other GTP-hydrolyzing enzymes,

the activity, as well as the GTP-binding affinity of

IM30, is relatively low [32]. Still, the rates observed

previously [32] and here, as well as described for the

isolated Arabidopsis IM30 [33], are at least 10-fold

higher than the putative activity reported very recently

for the wt and mutated Synechocystis proteins [22].

The rather low NTPase activity of IM30 might be due

to a very slow koff rate for ADP and GDP from the

putative binding pocket, resulting in a very slow regen-

eration of the IM30 protein. This assumption is sup-

ported by the observation that after the addition of

ATP, a stably bound ADP was detected in the cryo-

EM structure of IM30 even after further purification

steps [22]. Tight binding of ADP/GDP is rather

uncommon for classical GTP/ATPases, but clarifies

the negative result of an enzyme-coupled GTPase

assay that is based on the detection of free GDP [32].

IM30 nucleotide binding is not required for IM30

ring formation

The structure of oligomeric IM30 was recently ana-

lyzed via cryo-EM single-particle analysis [22]. In the

reported structure, a stably bound ADP in a unique

nucleotide-binding site has been detected, when the

protein was incubated in ATP solutions prior to struc-

tural analyses [22].

When we analyzed the presence of nucleotides in

our protein sample (500 pmol protein) that was puri-

fied without an ATP-including washing step, we did

not observe any measurable concentrations of the

nucleotides ADP/ATP or GDP/GTP (Fig. 2A,B). The

lower limit of quantification was 10 pmol, resulting in

a maximum nucleotide-bound protein fraction of not

more than 2%. Thus, we exclude that endogenous

nucleotides from the E. coli cells were co-purified with

the protein.

Next, we analyzed the structure of the nucleotide-

free IM30 protein by negative-staining electron micro-

scopy. Here, we observed the characteristic IM30 ring

structures as well as some rod-like structures (Fig. 2C),

as observed multiple times before for purified IM30

[16,19,29,30,39,40]. Thus, nucleotide binding clearly is

not crucial for stabilizing the IM30 ring structures.

Yet, this does not allow to finally exclude that ATP

(or GTP)-binding and/or hydrolysis might be a crucial

(initial) step in IM30 ring formation, as this might

already take place in E. coli during protein expression.

However, we have shown previously that IM30 elutes

as monomers or lower ordered oligomers from the Ni-

NTA matrix, which (re)assemble and form rings/rods

likely only later on after the purification process in

complete absence of nucleotides [19]. Noteworthy,

when IM30 is not assembled in higher-ordered oligo-

mers, about half of the protein is unfolded [20]. Fur-

thermore, also the recently published structure of

SynIM30 [22] was solved using a protein that was

purified when its N terminus was fused to a chitin-

binding domain. The mature IM30 protein was

released only after protease treatment [22]. As the pro-

tein’s N terminus is embedded within the narrow cen-

ter of an IM30 ring [22], likely monomers or smaller

oligomers were purified, which assembled to the final

ring structures only after removal of the fusion

domain.

Nevertheless, to further test whether ATP/GTP (or

ADP/GDP) is required for IM30 ring assembly, we

completely denatured IM30 prior to protein purifica-

tion via addition of 6 M urea. As shown before, IM30

has no a-helical structure in 6 M urea solutions, result-

ing in the loss of any potential nucleotide-binding site

[29] (Fig. 3A). The Ni2+-NTA-bound denatured pro-

tein was washed multiple times with 6 M urea-contain-

ing buffer to remove any potentially co-purified

substances, such as proteins, lipids, ions, or nucleo-

tides. Subsequently, the protein was refolded on the

column by washing with urea-free buffer. Note that

the overall secondary structure of renatured IM30 did

not differ from the secondary structure of IM30 puri-

fied under native conditions (Fig. 3A), indicating cor-

rect refolding of secondary structure elements of IM30

in absence of nucleotides. As the monomeric protein is

partly unfolded [20], this already indicated formation

of higher-ordered structures where the IM30 monomer

is largely a-helical. Furthermore, when the refolded

protein was analyzed via size-exclusion chromatogra-

phy, solely high molecular weight oligomers were

detected, but no smaller oligomers or monomers

(Fig. 3B), and these high molecular weight species

were identified by negative-staining EM as the proto-

typical IM30 ring and rod structures (Fig. 3C). As

expected, we did not detect any nucleotides in our

urea-treated and refolded protein samples, when ana-

lyzed by LC/MS as described (Fig. S1).

Thus, IM30 is unequivocally self-assembling and

oligomerizing into ring structures without nucleotide

binding and/or hydrolysis.

The ADP molecules observed in the cryo-EM struc-

ture most likely are a result of the ATP-including

washing step that was applied during purification of

SynIM30 [22]. It is well possible that ATP or GTP

binding slightly distorts the IM30 structure and/or

ATP/GTP binds solely to slightly distorted protein

regions. In fact, the putative nucleotide-binding site is

formed by different regions of three different IM30
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monomers, two from layer 1 and one from layer 2.

Yet, due to the basket-like structure of IM30 rings, the

structure of IM30 monomers is somewhat distorted in

the first three layers of a ring [22]. When natively

folded SynPspA was compared to in vitro refolded

SynPspA, formation of the prototypical rod structures

was observed, but the refolded rods appeared to exhi-

bit extended lengths and even looked more regular

compared to the natively folded protein [21]. Due to

these observations, we next tested whether the in vitro

refolded IM30 rings still have a GTP/ATP-hydrolyzing

activity. As can be seen in Fig. S2, the prototypical

IM30 rings do not show any significant ATP or GTP-

hydrolyzing activity anymore after in vitro folding.

While the here measured values (background) are still

higher than the values reported recently for the

SynIM30 wt protein [22], the refolded protein releases

Pi at similar low rates as measured with the negative

control. Thus, the nucleotide-binding site of IM30

likely might be slightly differently structured after

refolding, which does, however, neither lead to overall

misfolding of the secondary structure (Fig. 3A), nor to

a disturbed oligomerization and ring formation

(Fig. 3B,C). This again indicates that nucleotide bind-

ing/hydrolysis is not relevant for formation and/or sta-

bilization of the prototypical IM30 ring structures,

despite the localization of the proposed binding site at

the interface of three monomers inside the ring [22].

Fig. 2. IM30 assembles into rings in complete absence of nucleotides. (A, B) Extracted ion chromatograms (EIC) of specific mass

transitions for (A) ATP (m/z 506 ? 159) and GTP (m/z 522,3 ? 442) and for (B) ADP (m/z 426 ? 79) and GDP (m/z 442 ? 79) from the wt

IM30 sample (500 pmol) and nucleotide standards (200 pmol) as a control. C: Electron microscopy of purified IM30 wt in absence of

nucleotides. Scale bars represent 100 nm.
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In fact, based on a recent de novo protein design

study, it has been discussed that some level of ATP

binding and ATPase activity is not unusual in protein

sequence space, and an ATP-hydrolyzing activity can

be observed for proteins that differ substantially from

naturally occurring ATPases [41]. Thus, determining a

low ATP/GTP-hydrolyzing activity, as, for example,

observed with IM30, might not be uncommon. Yet,

the apparent lack of structural diversity among natu-

rally occurring ATPases (and GTPases) strongly indi-

cates that, while binding and catalysis can be

accomplished by alternative sequences and structures,

the energy gained via NTP hydrolysis might not be

properly transmitted into a biological activity by non-

canonical binding sites.

Conclusion

We here show that SynIM30 rings can hydrolyze ATP

and GTP at about identical rates, but not CTP or UTP.

The absence of nucleotides does not influence oligomer-

ization of IM30 monomers into ring structures, and the

negative-staining EM analyses clearly showed formation

of typical ring- and rod structures (Fig. 2C). Further-

more, IM30 prototypical rings do also spontaneously

assemble from completely denatured protein in complete

Fig. 3. IM30 self-assembles into ring-like structures. (A) CD spectra of IM30 purified under standard conditions or after renaturation were

measured from 200 to 260 nm. The spectra do not differ, indicating proper folding of the secondary structure of the renatured sample. The

spectra were smoothened using a Savitzky-Golay filter. n = 3, no error bars are shown. When the secondary structure of IM30 was

analyzed after urea denaturation, the spectra indicated complete unfolding of the protein. (B) The oligomeric state of IM30 was monitored

by SEC (Superose 12 10/300 GL column). Both, IM30 wt purified under standards conditions (black) and IM30 wt purified under denaturing

conditions and refolded (red) eluted in the void volume (> 300 kDa). (C) IM30 purified under denaturing conditions was analyzed by

negative-staining EM. Ring as well as some rod structures were observed. The scale bar represents 100 nm.
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absence of nucleotides (Fig. 3C). As a putative ADP-

binding pocket has been detected between two layers of

an IM30 ring, which involves interactions of a single

nucleotide with three different IM30 monomers [22,24],

the oligomeric structure of IM30 clearly is a prerequisite

for nucleotide binding. This is perfectly in line with the

observation that the oligomerization-inactive IM30

mutant had no GTP-hydrolyzing activity [32] (Fig. 1B).

This consequently implies that nucleotide binding and

(potentially) hydrolysis can physiologically only be rele-

vant (if at all), when the large oligomeric complex has

already formed. Clearly, membrane interaction destabi-

lizes IM30 rings resulting in formation of an IM30 carpet

structure on the membrane surface [20], and thus, ring

dissociation and IM30 monomer-membrane interactions

are thermodynamically favored over ring formation at

membrane surfaces. Furthermore, the presence of GTP

tends to decrease the thermal stability of IM30 rings [32],

and thus, nucleotide binding does not stabilize, but desta-

bilize an IM30 ring structure. These observations do not

support the idea that IM30 ring formation is initiated on

membrane surfaces by ATP/GTP binding and/or hydrol-

ysis, but rather suggests a nucleotide-independent mecha-

nism for IM30 oligomerization. Thus, as nucleotide

binding to and/or hydrolysis by IM30 neither decisively

regulates the IM30 oligomeric structure nor membrane

interactions [32], we suggest that IM30 nucleotide hydrol-

ysis may not play a crucial role in the function of

membrane repair based on the current knowledge. Nev-

ertheless, the residues identified to be involved in nucleo-

tide binding in the ATP-washed sample appear to

establish important contacts within the IM30 oligomer or

with other factors, as mutation of these residues results in

an impaired in vivo activity of IM30 [22]. Future infor-

mation on the in vivo IM30 structure might be of help to

unravel a potential in vivo function of the cryptic nucleo-

tide binding/hydrolysis activity.
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Fig. S1. Renatured IM30 does not bind any nucleo-

tides.

Fig. S2. Renatured IM30 does not hydrolyze ATP or

GTP.
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